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Abstract

We apply a lattice-based self-consistent mean-field (SCF) theory in order to investigate a dense bidisperse polymer brush. The system
studied contains polyisoprene chains of 485 and 970 repeat units. We compare our results to neutron reflectivity experiments recorded at two
different average surface densities of the grafted chains (0.323 and 0.455 nm ™~ %). We investigate the inner structure described by the bottom
region, formed by a mixture of long and short chains, and the top region composed only of segments of the longer chains. The inner structure
approximately scales with the total brush height, although small deviations occur. The width of the transition zone between the two regions
seems to be independent of the brush height. The agreement between the experimental results and our SCF results is very good. We also
systematically study the structure of the bidisperse brush for various values of the molar fraction of the longer chains, of the length ratios and

of the overall surface densities. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Polymer brushes are composed of polymer chains that are
densely attached by one end to a solid usually non-interacting
surface [1-6]. In polymer brushes the distance between
grafted points is small compared to the macromolecular
chain dimensions, hence strong overlap among neighboring
chains is enforced. Consequently, the chains deform and
stretch in the direction perpendicular to the interface.
They are often formed by adsorption from solution, i.e. by
bringing a solution containing end functionalized chains
into contact with an interacting surface. The ends can either
be chemically attached (quite high binding energy [7,8]) or
physi-adsorbed (binding energy of the order of 10 kgT [9—
11]). The adsorbing, functional end could be a reactive
group, or the immiscible block of a copolymer [12—16].
Applicability to colloidal stabilization, surface modifica-
tion, adhesion, and lubrication has led to extensive experi-
mental and theoretical study of these systems [4,5,17]. They
also serve as testing ground for theoretical models due to
their conceptual simplicity.

Initial theoretical and experimental studies of polymer
brushes concentrated on monodisperse polymers. However,
polydispersity, which is often an unavoidable feature of
polymer systems (most commercial polymers has a broad
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molecular weight distribution), has been shown to affect the
brush structure [18—23]. For example Milner et al. [19]
applying a mean-field approximation, found that for a
uniform distribution of chain lengths, the density profile
changes completely. This was verified in the simulation
reported in Ref. [21]. An understanding of the relationship
between the molecular weight distribution and the brush
properties is thus essential for purely scientific reasons
and for engineering applications (i.e. tailoring the brush
structure according to specific needs).

In this paper, we investigate a bidisperse melt polymer
brush, i.e. a polymer brush in which the degree of penetra-
tion of the solvent into the brush is essentially negligible.
We systematically investigate a bimodal molecular weight
distribution as a model system for polydispersity. A bimodal
brush consists of a mixture of shorter and longer chains and
can be crudely divided into two regions: the bottom layer,
which is adjacent to the surface and contains both short and
long chain segments, and the top layer, which contains only
segments of the longer chains. Many of our studies focused
on the investigation of a bidisperse dense brush composed of
an equimolar mixture of long and short chains, which differ
in chain length by a factor of two. In addition, we study the
dependence of the structure of the bidisperse brush on the
tethering density. Finally, we systematically study the struc-
ture of the bottom and the top regions for various molar
fraction of the longer chains and for various length ratios
of the two chains.
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2. Theoretical backgrounds

A good starting point in order to describe the conforma-
tions and concentration profiles at polymer interfaces is the
self-consistent mean-field (SCF) theory. The SCF theory
was originally developed to treat bulk polymeric systems
[24] and later developed by Dolan and Edwards [25,26] to
treat polymers in inhomogeneous environments. Since then,
the SCF theory has been applied to a variety of problems,
including grafted polymer chains. The basic idea of this
approach is to solve for the Green function of a random
walk in the presence of the mean-field imposed by the repul-
sive and attractive interactions. This mean-field is a function
of the density, which in turn is determined, self-consistently,
by the average value obtained from the Green functions.
The lattice version of the SCF theory was developed by
Scheutjens and Fleer [27-29].

The self-consistent equations have an analytical solution
for a particular limit, usually referred to as the classical limit
[30]. The analytical theories [31-36] took advantage of the
fact that in a system in which polymers are strongly
stretched as in a brush, fluctuations around the most prob-
able, or ‘classical’ paths are small and can be ignored to a
first approximation. This theory was derived in the limit in
which the thickness of the brush is infinitely greater than the
unperturbed radius of gyration of the polymer composing it.
In the analytical self-consistent field (aSCF) theories, the
mutual interaction of the polymer chains is represented by
a mean-field (referred to as ‘kinematic’ potential) that gives
rise to a non-uniform stretching of the chains. The confor-
mations of polymer chains are similar to the flight path of a
particle starting at rest at the location of the free end and
being accelerated in a field toward the ‘bottom’ of the brush.
The field is a function of the position in the brush (i.e.
distance from the surface). Chain length is proportional to
the time of flight of the hypothetical particles. Stretching is
equivalent to the velocity of the hypothetical particle. Kine-
matic potential has shown to be harmonic as the flight time
is independent of the starting position [19]. aSCF theories
have been extended in order to study dense polymer brushes
following a bimodal molecular weight distribution [19,20].
For bimodal brush, the description has to accommodate two
different flight times of the hypothetical particles. This can
only be achieved if the ends of the shorter and the longer
chains segregate into separate regions [19].

3. The numerical self-consistent field model

The self-consistent mean-field lattice model (SCF) devel-
oped by Scheutjens and Fleer has been used to describe
polymer melts [37] and polymeric solutions near a solid
substrate, polymers chemically attached to the substrate,
rings, branched chains, copolymers, multi-component poly-
meric systems, and curved interfaces [6]. In order to develop
a theoretical framework capable of describing realistic

situations, the initial version of the SCF theory has been
extended to incorporate conformational stiffness [38—40].

In our recent work [40], we have extended the Scheutjens
and Fleer self-consistent field model for a system of macro-
molecular chains located close to a substrate. Some of the
chains are terminally attached to the substrate (grafted
chains). On the substrate it is also possible to find adsorbed
(not chemically attached) segments. In Ref. [40], we have
reformulated the SCF model in order to describe the most
general case of free and terminally attached chains with
various molecular weight distributions.

A three-dimensional (xyz) lattice of simple symmetry is
assumed. The substrate is placed parallel to the xy plane; the
resulting lattice layers of the polymer (planes parallel to the
surface) are numbered consecutively, starting from the layer
next to the surface (z = 1) and ending at a layer (z = M)
where the presence of the substrate has negligible effect.
Each layer is one lattice site thick and contains L lattice
sites. Each lattice site has Z neighboring sites, a fraction
Ao of which lie in the same layer and a fraction A; of
which lie in each of the adjacent layers. Z, the coordination
number, reflects the point symmetries characterizing the
lattice (Z = 6 for cubic and Z = 12 for hexagonal; Ay =
2/3 and A; = 1/6 in both lattices). In order to describe a
constant volume system, each lattice site has to be occupied
by exactly one segment. A polymer molecule is represented
by a chain of ' connected segments, numbered s =
1,2,..., . The index i is adopted to denote the type of the
molecule. An additional index j is used in order to account
for the polydispersity. Thus, chains appear with several
sizes, r’:, where j varies from minimum to a maximum
value. Moreover, from two consecutive segments we define
the bond (b). In a cubic lattice the z-projection of a bond,
reduced by the lattice constant, has three values. For two
consecutive segments lying in layers z and z + 1, b is +1.
For two consecutive segments lying in layers zand z — 1, b
is —1. The value of b is O if both consecutive segments are
lying in layer z. In other words, b(of segment s) = b, =
Zg — Zg—1-

Each chain can assume a large number of possible confor-
mations in the lattice. Each conformation (c) is defined by
specifying the layer numbers in which each of the succes-
sive chain segments s finds itself (ie. c={(s=1,z=
). (5=2,2=2),..(s =rj,z= z,;)}). The number of
chains (i, j) in conformation c is indicated as n(; ;. The
chains are distributed over the various possible configura-
tions (sets of conformations {n{; j)}) in the lattice with statis-
tical weights depending on the energy and entropy of each
configuration. The proper description of the system will be
given in the context of statistical physics by means of the
grand canonical partition function. The partition function is
a sum of terms, each related to a specific configuration of the
chains that fills the lattice. The non-bonded chain inter-
actions are approximated using the Bragg—Williams
mean-field approximation and the intrachain interactions
are approximated using bending energies. The counting of
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the number of ways of arranging chains over available sites
is readily performed in a lattice model. Equilibrium is the
state at which the chains are distributed over the various
possible conformations in the lattice such that the free
energy (derived from the partition function) is at its mini-
mum. We make the assumption of replacing the sum of
several terms in the partition function by its maximum
term (i.e. zero fluctuations of the density in the (x,y) direc-
tions). In order to obtain an expression for the number of
molecules n(; ; of chain type i of size r,’ in conformation c,
we minimize the natural logarithm of the maximum term of
the partition function with respect to nj; j, subject to the full
occupancy constraint applied layerwise. The system can be
described in a mean-field self-consistent approximation in
terms of a segment potential u(z) depending only on the
chemical nature of the segment, or, equivalently, in terms
of a segment weighting factor (G(z) = e “@*T) The weight
G(z) is proportional to the probability of finding a segment
in layer z of the interfacial system, relative to finding it in
the bulk. Then the statistical weight for finding an end of an
s-segment long chain in layer z, G(z; ), is defined. It follows
a recursion relation, which is solved once we know a proper
initial condition. Then it is straight-forwarded to find the
concentration of the end and non-terminal segments.
Finally, by means of a composition law we find the volume
fractions. The details of the SCF formalism are given in
Refs. [27-29,37].

This simple SCF scheme has been extended in order to
account for conformational stiffness [38—40]. Chain stiffness
is introduced by assigning different bending energies to differ-
ent bending angles formed by triplets of segments (or pairs of
bonds). For a cubic lattice only 0° (back-folding or V confor-
mer), 90° (L conformer) and 180° (straight or I conformer)
bending angles are possible (see fig. 2 in Ref. [40]). The
bending energies can be determined from the characteristic
ratios [39,40]. To each bending energy (&) we associate the
corresponding Boltzmann factor 7, = exp(—é&p/kgT).

In a recent publication [40], we have extended SCF
theory in order to treat more complex systems (i.e. poly-
disperse end-grafted chains). From now on, this modified
version of the plain SCF theory, which treats both features
(polydispersity and end-grafted chains) simultaneously, will
be referred to as numerical self-consistent field (nSCF)
theory. Actually, all equations derived in Ref. [40] are
valid. But in melt polymer brush, we impose the constraint
that the lattice is fully occupied exclusively by grafted
chains. Hence, the number of layers, M is given by: M =
786, where 7€ are the number-average molecular weight of
the grafted chains and & the surface density of the grafted
chains (i.e. percentage of the surface that is occupied by
grafted chains).

4. Mapping real polymers onto the lattice

Among the possible choices for the lattice segment size,

the ones that have been used the most are Kuhn and Flory
segments. Equating the mean square end-to-end distance of
a Kuhn chain represented by ng Kuhn segments, each of
length I, to the mean-square end-to-end distance of the
real chain of n;, bonds, each of length /,, with characteristic
ratio C, one has

(R?) = Coomply = ngli. (1)

Equating the maximally extended length of a Kuhn chain to
the maximally extended length of a real chain, with 6y, the
angle between successive chemical bonds,

nKlK = nblb Sln(%) (2)

By combining these two expressions we find an expression
for the Kuhn segment /y,

Co
k=L———.
sin(i)
2

The Flory segment, of length Ik, is usually shorter; it corre-
sponds to the length scale at which mixing occurs. A Flory
segment can be defined such that a chain will have the same
maximally extended length (end-to-end distance in all-trans
conformation) and volume in the Flory segment representa-
tion as are measured experimentally [39,40].

Equating the volume of the Flory chain, containing r
Flory segments, to the volume of a real chain

anm
Nap

3)

rl% =

“4)

where n,, is the degree of polymerization, M., the monomer
molecular weight, p the mass density of the polymer and Ny
is Avogadro’s number.

Moreover, equating the length of the fully extended Flory
chain to the maximally extended length of the real chain

rlg = nypl, sin(%) 5)
where ny, is the number of chemical bonds per chain, /, is
the bond length and 6y, is the bond angle along the chain
backbone.

By combining these equations, an expression for the
length of the Flory segment is obtained,

12

M,
Iy = M . (©6)

0,
NApI’lblb Sil’l( ?b)

The bending energies are determined from the characteristic
ratios by matching the mean-square end-to-end distance
between a real chain and a chain of correlated Flory
segments,

(R®) = Coompls = C(r — D} (7
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Fig. 1. United atom model for cis-1,4 polyisoprene. The atom numbering
shown is used to describe bond angle and bond length values as given in
Table 1.

in which Cfo is the characteristic ratio of the correlated Flory
chain.

Assuming that 7y = 0 (i.e. back-folding is forbidden), the
characteristic ratio of the Flory chain is related to the bend-
ing statistical weights by:

Ch=1+ =+ Lelaanr ®)
27, 2
Since the characteristic ratio depends only on the difference
between the energies (g1, — &), one (in our case &) case
may be set arbitrarily to zero. So the bending energy £ can
be estimated once the characteristic ratio Co, is known.
Most researchers use the Kuhn segment as the unit
segment. In our nSCF methodology, we use the Flory
segments, in order to have correct representation of both
polymer density and polymer stiffness.

5. Results and discussion
5.1. System studied

We apply our nSCF theory in order to investigate bi-
disperse dense brush (i.e. a brush in which the solvent is
air and hence the degree of penetration of the solvent is
negligible) composed of an equimolar mixture of short
and long chains, which differ in chain length by a factor
of two [41]. The chain lengths of the shorter and longer
polyisoprene (PI) chains are approximately 485 and 970
repeat units (monomers), respectively. Polyisoprene is a
very well studied polymer. Its united atom representation
is shown in Fig. 1. Since the double bond constrains all five
atoms in the cis-1,4 PI monomer to lie on the same plane, it
is rather straightforward to map the cis-1,4 Pl monomer onto
an equivalent ‘polymethylene’ trimer. Hence, we represent
PI monomer by an equivalent structure (see Fig. 2) that
contains only single bonds. Simple geometrical considera-
tions give that the length of the equivalent bond /, is
3.1793 A and the angle between two consecutive single
bonds 6, is 92.74° (Fig. 2). In the results produced by
means of our nSCF method, we have assumed that the
temperature of our system is 220 °C, which is the tempera-
ture at which experimental data [41] were collected. We use
a mass density of 0.91 g cm >, a value derived from expres-
sions, of the mass density as a function of the pressure and
temperature, found in Ref. [42]. The value used in the

Table 1
Geometric parameters of cis-1,4 polyisoprene (see Fig. 1)

Bond length (A)

4'-1 1.53
1-2 1.51
2-5 1.51
2-3 1.34
3-4 1.51
Bond angle (°)
123 125
234 125
125 109
214’ 112
341’ 112

present work for the characteristic ratio, Cy, of the equiva-
lent trimer was estimated to be 2.16 [42,43]. For this C,,
Egs. (6)—(8) give a bending energy & = 0.402kgT (7, =
0.669).

As in the experimental study, a mixture of h-PI and d-PI
was used, the Flory segment used in out nSCF approxima-
tion, was the arithmetic mean value (lp = lg(h-PI) +
Ix(d-PI))/2. From Eq. (6), we find Iz = 5.3405 A, therefore
the number of chemical (isoprene) monomers in a Flory
segment is 1.1604. From Eq. (3), we found that the Kuhn
statistical segment has a size almost twice the size of the
Flory segment (Ix = 9.4877 A).

The bidisperse brush is composed of longer a-chains with
chain length r, and shorter b-chains with chain length r,
Flory segments. The length ratio of the two chains is repre-
sented by & = r,/r,. The longer chains contain r, = 836
Flory segments. The shorter chains contain r, = 418 Flory
segments. The total number of chains, n, per surface area, A,
is given by o = n/A, the number per unit surface of longer
(shorter) chains is given by o,(oy,). Then, the molar fraction
of the longer (shorter) chains is defined by x,(x,) =
o,(op)/o. The polymer is regarded as incompressible.
Hence the total height, H (in nm), of the bidisperse brush
is given by the number-average chain length, 7&(= x,r, +
(1 — x,)ry), and the number of chains per unit surface (over-
all surface density, o'): H = [fo7¢, where [ is given in nm

and surface density is expressed in nm 2.

5.2. Comparison to experimental studies

The polymer brushes used in Ref. [41] were prepared by
spreading mixtures of short and long polyisoprenes with

Fig. 2. Geometrical mapping of a cis-1,4 PI monomer onto an equivalent
three-bead ‘polymethylene’ monomer.
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Fig. 3. Schematic drawing of the ‘two-box’ model of the scattering length
density used for the simulation of the experimental neutron reflectivity
profiles [41]. Our nSCF model is applied on the polymer region of thickness
H.

quaternary ammonium headgroups onto the surface of a
Langmuir trough filled with water. The neutron reflectivity
profiles recorded at two different values of the mean areas
per polymer chain, 220 and 310 A2, which corresponds to
surface density of o= 0.455 and 0.323 nm > Authors of
Ref. [41] analyzed their reflectivity profiles considering a
‘two-box’ model. This model is described by four scattering
length densities (subphase, (b/V)gy,; bottom, (b/V)potom; top
region of the brush, (b/V),y; and air (b/V),;, = 0), three inter-
facial widths (bottom, wygoms inner, w;; and top interface,
Wiop) and two lengths (height of bottom region, 4, and total
brush height, H) (outlined in Fig. 3). According to Ref. [41]
the closest region to the solid surface (water phase,
Whottom ~ 3+9 A~ Ir/2) and the very top region (polymer/

scattering length density

T T T T
100 200 300 400

o4

distance from interface z[A]

Fig. 4. Scattering length density profiles of monolayers of an equimolar
mixture of d-PI and h-PI grafted at a solid surface, recorded at mean area
per polymer chain at 220 A2 (solid line), compared with profiles predicted
by nSCF model (dotted line). Units of scattering length density are 10° A2
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Fig. 5. Scattering length density profiles of monolayers of an equimolar
mixture of d-PI and h-PI grafted at a solid surface, recorded at mean area
per polymer chain at 310 A2 (solid line), compared with profiles predicted
by nSCF model (dotted line). Units of scattering length density are 10°A2

air, Wiop ~ 5A~ Ir), are very narrow. Therefore in our
nSCEF calculations we ignore these regions and we concen-
trate our study exclusively on the inner structure. Once we
know (b/V)peuom and (b/V),, and by means of the volume
fraction profiles obtained by our nSCF method we estimate
the scattering length densities of the shorter chains (h-PI),
(b/V)npr, and the scattering length densities of the longer
chains (d-PI), (b/V)qp. Actually, the values used in our
calculations in order to estimate the scattering length
densities, are the ones reported in Table 2 in Ref. [41]
(ie. (B/V)potom =351 X 1070 A% and (b/V),, = 6.94 X
10°° A% for experiment with surface density o =
0323nm 2 and  (B/V)poyom = 3.58 X 107® A% and
(DIV)op = 6.94 X 107 A% for experiment with surface
density o = 0.455 nm ~2).

In Figs. 4 and 5, we show the scattering length density
profiles of an equimolar mixture of d-PI grafted chains and
h-PI grafted chains recorded at surface densities mentioned
before, and compare to profiles predicted by nSCF model.
For both cases, the corresponding scattering length density
profiles predicted by our nSCF method (dashed lines in both
Figs. 4 and 5) are in good agreement with the experimental
results (solid lines). More explicitly, the agreement is excel-
lent for the lower surface density case (o = 0.323 nm _2,
Fig. 5) and the agreement is very good for the higher surface
density case (o = 0.455 nm -2 Fig. 4). We should point
out that authors of Ref. [41] compared the corresponding
scattering length density profiles to the profiles estimated by
aSCF theories [19,20] and found very poor agreement (see
figs. 6 and 7 in Ref. [41]).

5.3. Structural study of bidisperse brushes

Since our nSCF model reproduces experimental findings
for dense bidisperse brush reasonably well, we pursue an
nSCF-based systematic study of the dense bidisperse brush,
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Fig. 6. Plots of the ratio of the height of the mixed region to the total brush
height (h/H) as a function of the molar fraction of the longer chains, x,, for
various length ratios (&) of the two chains. Data points correspond to & =
0.5 (squares), € = 0.25 (lower triangles) and &= 0.1 (upper triangles).
Solid lines depict the predictions of the aSCF theory.

a model system for studying the dense polydisperse brush.
In Fig. 6, we plot the h/H ratio as a function of the molar
fraction of the longer chains, x,, for various length ratios of
the long and short chains, ¢ (= 0.1, 0.25, 0.5), assuming
fixed overall surface density of grafted chains (o=
0.5 nm ~%). In our nSCF approximation, & is defined as the
distance from the solid surface at which the long and short
chains achieve equal volume fractions (i.e. & is an estimate
of the height of the shorter chains). In the aSCF theories # is
defined as the distance from the solid surface above which
exclusively long chains are present. We observe that the
aSCF results (solid line in Fig. 6) and the nSCF results
(squares in Fig. 6) show very similar behavior. The largest
difference is observed for length ratio of the two chains of
one-half (¢ = 0.5), which corresponds to the length ratio of
the two chains used in the experimental study [41]. Our
nSCF approximation predicts a simple functional form
for the relationship between #I/H and x, hH=
Ja = x)/(1 + 1.6x,), which should be compared to //H =
V(= x)/(1 + x,) predicted by aSCF theories [19,20,41].
Actually, in the region 0.1 =x, =0.9, nSCF model
predicts a linear dependence between the h/H ratio and the
molar fraction of the shorter (1 — x,) or longer chains (x,),
(h/H ~ 0.95 — 0.84x,). In all cases shown in Fig. 6, we
observe that the nSCF results are systematically lower
than the one obtained from the aSCF theories. Moreover,
as the length ratio of the two chains (&) decreases, the rela-
tive extension of the shorter chains (h/H) reveals a linear
region of smaller extent (0.5 < x, < 0.9). The slope of the
linear part decreases as ¢ decreases, in agreement to what is
expected for purely space-filling (entropic) reasons. For
e < 0.5, two distinct regions are reported. One correspond-
ing to low molar fractions (x, < 0.4) where the h/H ratio is
more sensitive to changes in the molar fraction (x,) and one
almost linear region corresponding to high molar fractions

h/H

Fig. 7. Plots of the h/H ratio as a function of the length ratios (&) of the two
chains, for various molar fraction of the longer chains, x,. From upper to
lower set of data points, x, = 0.1, 0.3, 0.5, 0.7 and 0.9. Solid lines describe
the predictions of the aSCF theory.

(x, = 0.5) where the A/H ratio is less sensitive to changes in
the molar fraction (x,).

In Fig. 7, we depict the h/H ratio as a function of the
length ratio of the two chains (&), for various molar frac-
tions of the longer chains (x,). All theoretical (nSCF) calcu-
lations were performed at a fixed overall surface density of
o = 0.5 nm ~2. For most cases, the predictions of the nSCF
model (squares in Fig. 7) and the predictions of the aSCF
theory (solid line in Fig. 7) are in good agreement. The
worst agreement is observed for large values of & and for
large values of x,. Working with large values of molar frac-
tion of the longer chains, x,, both mean-field methods (aSCF
and nSCF) predict an almost linear relationship between the
relative extension, A/H, and the length ratio of the two
chains, €. It is very instructive to observe that bidisperse
mixtures containing more short chains (x, < 0.4) show two
distinct regions. One corresponding to low length ratios
(& <0.25) where the h/H ratio increases abruptly with ¢,
and one corresponding to high length ratios (& = 0.25)
where the A/H ratio increases less abruptly with &. For
low concentration of long chains, the molar fraction,
1 — x,, is an indicator of how many short chains surround
one long chain. Obviously, assuming fixed molar fraction
of long chains (i.e. number of short chains surrounding
one long chain), the larger the size of the long chains
compared to the size of the short chains, the more the
short chains will be influenced. As the size of the long
chains decreases (i.e. £ takes values close to unity) the
number of segments of the long chains that protrude from
the surrounding short chains decreases too and its influence
on the brush structure is less.

In Fig. 8, we study the #/H ratio as a function of x, for
& = 0.5, considering various overall surface density of the
grafted chains (o = 0.2, 0.3, 0.5 and 0.8 nm_z). Both aSCF
theory (solid line) and the uniformly extended chain model
(dotted line) predict affine deformation, i.e. the h/H ratio is
independent of the brush thickness H or it is independent of
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Fig. 8. Plots of the 4/H ratio as a function of the molar fraction of the longer
chains, x,, for length ratio £ = 0.5 and for various overall surface densities.
Points correspond to o = 0.2 nm -2 (squares), o= 0.3 nm 2 (circles) oo =
0.5nm > (upper triangles) and o = 0.8 nm 2 (lower triangles). Solid line
describes the predictions of the aSCF theory (described in Refs. [19,20]).
Dotted line describes the predictions of a simple analytical theory in which
we assume that the chains are uniformly extended.

the surface density o. But experiments [41] suggest that the
h/H ratio seems to decrease slightly with increasing film
thickness. In Fig. 8, we see that our nSCF model shows
behavior in agreement with the experimental results. Speci-
fically, our nSCF model predicts different behavior, depend-
ing on the relative amount of short and long chains. For low
values of molar fraction of the long chains, x,, as we
increase the overall surface density the i/H ratio increases
too. On the contrary, the behavior suggested by experiments
on equimolar mixtures [41] (i.e. for x, = 0.5, h/H ratio
decreases with increasing surface density) is predicted by
nSCF model for x, = 0.5. Actually, the effect is enhanced as
x, is increased. The different behavior, depending on the
molar fraction of the longer chains can be explained by
means of the following argument. As the overall surface
density is increased both short and long chains come closer,
but they influenced in a different way. For high moral frac-
tion of short chains (x,— 0), the upper segments of long
chains may, depending on the length ratio of the two chains,
interact with other long chains. On the contrary, short chain
can not show a similar behavior, for high moral fraction of
long chains (x,— 1 or x,— 0). Finally, we observe that
most data points are near the line connecting the edge points
(WH = 0,x, = 1) and (W/H = 1, x, = 0). This behavior can
be ascribed to the fact that in the brush regime the film
thickness is proportional to the chain size.

Though our nSCF description of the brush has similar
scaling to the aSCF description, its detailed predictions
are substantially different. Actually, this is the reason for
our nSCF results showing very good agreement with the
experimental data, but the aSCF results do not agree satis-
factorily with experimental results. In Fig. 9, we plot the
volume fraction profiles of the longer chains, ¢, for a
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Fig. 9. Volume fraction profiles of longer chains, ¢,, for £ = 0.5, x, = 0.5
and overall surface density of o = 0.5 nm 2. The solid line describes the
prediction of our nSCF model and the dashed line the aSCF theory.

system containing equal number of short and long chains
(x, = 0.5) with length ratio between the long and short
chains of two (¢ = 0.5), assuming an overall surface density
of o = 0.5 nm ~>. We observe that our nSCF theory predicts
that the size of top region (composed exclusively of
segments of longer chains) is much smaller than the one
predicted by the aSCF theory. Consequently, we observe
that in the top region the content of the shorter chains is
higher than that predicted by the aSCF theory. Thus,
compared with the predictions of aSCF theory, our nSCF
method reports that the shorter chains are more stretched.
Moreover, we predict that the content of long chains in the
bottom region (solid line in Fig. 9), where a mixture of long
and short chains coexists, is higher than that predicted by the
aSCF theory (dashed line in Fig. 9). This is in agreement
with the conclusions drawn from the experimental studies in
Ref. [41].

The volume fraction profiles obtained in the context of our
nSCF model have in most cases (except for very high surface
density of grafted chains) a hyperbolic tangent functional
form in agreement to several experimental studies [6,17].

Then, the volume fraction profile of each chain type (¢,
for long chains and ¢, = 1 — ¢, for short chains) can be
characterized by an effective interfacial width, w;, deter-
mined by a hyperbolic tangent fit

e(z=H) + @,(z=10)
2

+ pa(z=H) — (2= 0) tanh( 22— h ) ©)
2 Wi

@,(2) =

where H is the height of the bidisperse brush, 4 the maxi-
mum extension of the shorter chains (defined as the distance
from the substrate at which the volume fraction of the
shorter chains is equal to the volume fraction of the free
chains), and w; is the interfacial width parameter. As the
volume fraction profiles predicted by the aSCF theories
cannot be fitted by a hyperbolic tangent function, it is not
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Fig. 10. Plots of the interfacial width, w;, as a function of the molar fraction
of longer chains, x,, for given & = 0.5 assuming various overall surface
densities o= 0.2 nm "> (squares), o= 0.5 nm 2 (lower triangles) and
o=0.8nm > (upper triangles).

straightforward to define an interfacial width. But as aSCF
theories predict affine deformation, the thickness of the tran-
sition zone between the top and bottom regions, w;, should
change similarly. Experiments [41] do not agree with these
predictions, as they have revealed that w; seems to be un-
affected by the change in brush thickness. Fig. 10 shows,
that our nSCF results predict a behavior in agreement with
experimental observations. Moreover, our study has shown
that for x, < 0.6 the interfacial width is unaffected by
changes in brush thickness or equivalently by changes in
the overall surface density of the grafted chains. For large
values of molar fraction of long chains (x, = 0.6) we report
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Fig. 11. Plots of the interfacial width, w;, as a function of the molar fraction
of longer chains, x,. The overall surface density is o= 0.5 nm 2. The
length ratio, &, takes several values (¢ = 1/3 represented by diamonds, &£ =
1/5 represented by upper triangles, and &= 1/10 represented by lower
triangles).
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Fig. 12. Profiles of the product of the shorter and longer chain volume
fractions, ¢,¢, = ¢,(1 — ¢,), for a bimodal brush with number-average
chain length 418 Flory segments for the shorter chains and 836 Flory
segments for the longer chains (¢ = 0.5). Each curve corresponds to a
different molar fraction of the longer chains. The molar fraction decreases
from left to right. The values of x, used in the calculations are 0.1, 0.5 and
0.9. In all cases the overall surface density is 0.5 nm >

a slight dependence on the overall surface density. Finally,
we report that for x, ~ 0.7 the interfacial width reaches a
maximum value.

In addition, we have systematically investigated the influ-
ence of the length ratio of long and short chains on the inter-
facial width of the mixed region. In Fig. 11, we observe that
the interfacial width reaches a maximum value for all cases
studied by nSCF method (& = 1/10, 1/5 and 1/3). The value of
the molar fraction of the longer chains, x,, at which the maxi-
mum occurs, is shifted toward lower values as we decrease &.

The behavior reported in Figs. 10 and 11 will be investi-
gated further by studying the region where long and short
chains coexist. In order to investigate this region, we study
the product of the volume fractions (¢,¢, = @,(1 — @,)),
which takes non-zero values when volume fractions of both
short and long chains have appreciable value. In Fig. 12, we
plot the ¢,¢, products as a function of the distance from the
substrate for three different molar fractions of the long
chains. In all cases studies we assume an overall surface
density of 0.5 nm * and & = 0.5. For x, = 0.1, where we
have very few long chains the thickness of the brush is
mainly determined by the size of the shorter chains (we
should recall that in the brush regime, thickness is propor-
tional to the contour length of the polymeric chain), in
accordance to what was predicted from the 4/H ratio depen-
dence (see Fig. 6), where we have reported a value of A/
H ~ 0.9. In this case long and short chains coexist every-
where. But longer chains contain more segments (twice the
number of segments of the shorter chains) than the shorter
chains. Those segments of the longer chains are accommo-
dated in the top region (Fig. 14(a)). Therefore, in this region
we have comparable number of segments belonging to short
chains (as molar fraction of shorter is high 1 —x, = 0.9)
and to long chains (see Fig. 12, dotted line). In this case we
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Fig. 13. Profiles of the product of the shorter and longer chain volume
fractions, ¢,¢p, = ¢,(1 — ¢,), for a bimodal brush with number-average
chain length 418 Flory segments for the shorter chains and 836 Flory
segments for the longer chains (& = 0.5). The overall surface density is
0.5 nm 2. Each curve corresponds to a different molar fraction of the longer
chains. The molar fraction decreases from left to right. The values of x, used
in the calculations are 0.1 and 0.9. Solid lines represent the predictions of
our nSCF method. For comparison we plot the predicted profiles from aSCF
theories.

see that the shorter chains and the lower part of the longer
chains are almost equally stretched, but obviously the upper
segments of the longer chains are much less stretched as we
assume that our dense brush is incompressible (see Fig.
14(a)).

We then discuss the case where we have equal number of
short and long chains (x, = 1 — x, = x, = 0.5). In that case
for distances from the substrate up to 4, both short and long
chains coexist at equal amount (see Fig. 12, solid line). This
is why we observe almost constant value for the product
¢@.¢p. But at the top region, H — h, which was predicted
to be of the same size as & (as h/H ~ 0.5 from Fig. 6), purely
long chains exist and the product ¢,¢;, has small value. The
structure of the equimolar bidisperse dense brush is shown
in Fig. 14(b).

We finally investigate the case where our system contains
a lot of long chains and consequently very few short chains.
Here the region of coexistence between short and long
chains is defined exclusively from the bottom region (see
Fig. 12, dashed line). Again, this is in accordance to the
picture envisioned from the A/H ratio study, where we
reported a value of 0.20 (see Fig. 6).

In Fig. 13, we compare nSCF (solid lines) and aSCF
(dotted lines) results. We see different behavior mainly for
7> h as it is expected (see Fig. 9). We can define an inter-
facial width w,.., as:

Weoex = 4 J'O dz (Plong Pshort - (]0)

It can be easily shown that w,, oc w;, once the volume frac-
tion profiles follow a hyperbolic tangent profile (Eq. (9)). The

(a)

b

&l

I
NI

Fig. 14. Bimodal brushes. (a) Few long chains immersed in an environment
of short chains (x, = 0.1). The shorter chains determine the thickness of the
brush. The top region of the brush is the region where shorter and longer
chains intermingle more. (b) Bimodal brush containing equal number of
shorter and longer chains (x, = 0.5). There is a wide region, starting from
the region very close to the solid surface, where shorter and longer chains
coexist. (c) Few short chains immersed in an environment of long chains
(x, = 0.9). The longer chains determine the thickness of the brush. The
bottom region of the brush is the region where shorter and longer chains
coexist.

Weoex Calculated by means of both mean-field methods (nSCF

and aSCF) follows the behavior depicted in Fig. 10.
Obviously, a specific length ratio of long and short chains,

g, can be achieved by several combinations of r, and r,.
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A preliminary study has not shown any system size effects
on the h/H ratio. On the contrary, the interfacial width is a
function of r, and & (i.e. w; = wi(e, 1,)).

6. Conclusions

The dense bidisperse polymer brush is an inhomo-
geneous system. Close to the plane of tethering, short
and long chains coexist. On the contrary, the top region
of the brush composed of very few short chains.
Depending on the overall surface density, the molar
fraction of the longer chains and the length ratio between
long and short chains, this region might contain purely
long chains. The aSCF theories predict very abrupt vanish-
ing of the volume fraction of the shorter chains. This
behavior is not supported by the experimental studies [41]
and our findings.

In the system studied here, our nSCF approach (i.e.
extended SCF model, in order to describe polydisperse grafted
polymer chains) gives results in very good agreement with the
experimental results, practically without fitting parameters.

For a dense bidisperse polymer brush of ¢ = 0.5 and x, =
0.5, our nSCF results show that the width of the transition zone
between the mixed region and the top region is independent of
the height of the brush, in agreement to experimental results
[41]. Moreover, our studies for the same system, show a devia-
tion from affine deformation (i.e. changes in the relative height
of the mixed region upon changing the brush height) consistent
with indication from the experimental work [41].

In conclusion, we suggest more experiments to clarify
and check behavior predicted by nSCF models, as bidisperse
brush is a prototype system for polydisperse systems (and in
most practical cases we have polydisperse polymers). Our
major predictions are (a) that the ratio of the height of the
mixed region to the total brush height depends on the overall
surface density in a way which is sensitive to the value of
the molar fraction of the two chains and (b) that the inter-
facial width shows a maximum.

Finally, we would like to point out, that our method is
quite general and can be applied for any polydisperse
systems (for example, trimodal molecular weight distribu-
tion, uniform molecular weight distribution, Flory most
probable molecular weight distribution etc.).

In conclusion, we say that in this work we have shown
that our extended version of the SCF (nSCF) model is a very
powerful computational tool for treating realistic polymeric
systems. It is known that aSCF theories usually give quali-
tative agreement. On the contrary, our nSCF approach gives
adequate quantitative agreement with experimental results.
Recently, this approach was applied with great success in
similar polymeric systems [44,45].
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